TRÀ DƯ TỬU HẬU 16/a3

 
Những Hiện Tượng Vũ Trụ Có Tốc Độ Nhanh Hơn Cả Ánh Sáng


Hình ảnh đầu tiên về Hố Đen Messier 87 - Thư Viện Thiên Văn

-Không có khoa học vì khoa học, không có nghệ thuật vì nghệ thuật. Khoa học nghệ thuật tồn tại để phục vụ xã hội, để làm con người hạnh phúc hơn, cao thượng hớn, có kiến thức phong phú hơn và có nhiều tiện nghi vật chất hơn trong đời sống...
Khuyết danh 
- Cuộc sống đặt mục tiêu cho khoa học, khoa học soi đường cho cuộc sống.
Khuyết danh.
-Phương pháp thích đáng nhất để nghiên cứu đặc tính của sự vật là suy luận xuất phát từ những cuộc thí nghiệm.
Isaac Newton 
-Ngu dốt sinh ra sự quả quyết hơn là tri thức; chính những người biết ít chứ không phải những người biết nhiều mới quả quyết khẳng định vấn đề này hay vấn đề kia sẽ không bao giờ được khoa học giải đáp.

Charles Darwin
-Khoa học cho chúng ta tri thức, nhưng chỉ triết học mới có thể cho chúng ta sự thông thái.

Will Durant
 
- Thật sai lầm khi nghĩ rằng nhiệm vụ của vật lý là tìm ra bản chất của Tự nhiên. Vật lý là điều chúng ta nói về Tự nhiên.

Niels Bohr
-Trí tuệ trực giác là một năng khiếu thiêng liêng và trí tuệ thuần lý là đầy tớ trung thành. Chúng ta đã tạo ra một xã hội chỉ tôn kính tên đầy tớ mà quên mất đi cái năng khiếu. 
Albert Einstein  
-Khoa học không bao giờ có điểm dừng, nó là một câu đố vĩnh hằng.
Albert Einstein 
-Rồi đây, khoa học sẽ nhận thấy rằng hoang tưởng vừa là kẻ thù lung lạc tinh thần, vừa là người bạn đồng hành thân thiết đóng vai trò cứu cánh không thể chối bỏ cuối cùng của vật lý học nghiêm túc trong công cuộc đi tìm sự thực khách quan của Tự Nhiên.
NTT

(tiếp theo)

Chuyện 16: SỰ THỰC KHÁCH QUAN
3/ CHƯA THẤU TỎ:

Sau khi đọc xong bài đó, ông A lại hướng dẫn mọi người đọc thêm hai bài nữa:

"Vụ nổ Big Bang là gì?

Vũ trụ là gì? Một câu hỏi lớn đã từng đặt ra trước nhân loại suốt bao nhiêu thế kỷ. Thời xưa ở Trung Hoa cổ đại, nhà triết học Lão Tử đã cho vũ trụ là một tồn tại "vô thuỷ, vô chung, vô cùng, vô tận". Nhưng đến thế kỷ 20, với sự tích luỹ các kiến thức của vật lý vi mô và vật lý thiên văn, cho phép một học thuyết mới ra đời, cho rằng vũ trụ có một điểm khởi đầu để hình thành. Đó là vụ nổ lớn Big Bang.
Như vậy Big Bang là vụ nổ đầu tiên để từ đó đồng thời sinh ra không gian, năng lượng và vật chất để tạo ra vũ trụ như hiện nay. Một thời gian dài, lý thuyết này bị coi là một lý thuyết siêu hình nhưng các thành tựu gần đây của vật lý hạt cơ bản và kết quả quan sát những cấu trúc thiên văn lớn nhất đã cung cấp một kịch bản phù hợp với cấu trúc và sự phức tạp hoá dần dần của vật chất trong lòng vũ trụ nên ngày càng được thừa nhận rộng rãi.
Theo kịch bản này, khởi thuỷ vũ trụ nguyên thuỷ chỉ là một đại dương cực kỳ đặc và nóng (đây vẫn là điều phải thừa nhận). Rồi vụ nổ lớn Big Bang xảy ra, từ đó bắt đầu toàn bộ các biến cố sau này.

Hình ảnh tưởng tượng về vụ nổ Big Bang.
Hình ảnh tưởng tượng về vụ nổ Big Bang.
Vũ trụ nguyên thuỷ chỉ là một thứ "cháo đặc" gồm những hạt quark và electron chuyển động theo một hướng gần với vận tốc của ánh sáng. Tuỳ theo những va chạm không ngừng diễn ra, mà một số hạt huỷ lẫn nhau, một số khác lại sinh ra. Trong pha đầu tiên, thứ "cháo" đó bao gồm các đối tượng lượng tử mang điện tích, quark và phản quark. Rồi thứ "cháo" đó giàu thêm những hạt và phản hạt nhẹ được gọi chung là lepton (electron, nơtron và những phản hạt của chúng).
Một phần triệu giây sau Big Bang, nhiệt độ hạ xuống tới 10.000 tỉ độ Kenvin (thường gọi tắt là độ K. Về giá trị, O độ K bằng -273,16 độ C), lúc này xuất hiện các hạt nặng đầu tiên (proton và nơtron) nhờ các hạt quark kết hợp với nhau. Rồi các lepton sinh sôi nảy nở rất nhanh, đến lượt chúng chiếm hàng đầu trong vũ trụ. Nhưng nở ra nên vũ trụ nguội dần đi. Khi nhiệt độ hạ xuống tới 10 tỷ độ K thì proton và nơtron bắt đầu kết hợp với nhau để tạo thành đơteri. Lúc đó đồng hồ vũ trụ chỉ 1 giây, nhưng năng lượng của các photon vẫn đủ lớn để nhanh chóng phá vỡ hạt nhân đầu tiên đó. Mãi 3 phút sau, khi nhiệt độ hạ xuống tới 1 triệu độ K thì photon mới không còn khả năng phá vỡ các liên kết hạt nhân.
Khi ấy trong vũ trụ đã có hoạt động hạt nhân rất mạnh dẫn tới sự hình thành các hạt nhân nguyên tử nhẹ như đơteri, heli 3, liti 7 và heli 4... 15 phút sau Big Bang, quá trình tổng hợp hạt nhân ban đầu đó mới kết thúc, nhiệt độ hạ xuống quá thấp, không đủ đảm bảo cho phản ứng hạt nhân xảy ra.

Vật chất, ánh sáng và các loại bức xạ khác tràn xa ngày càng mỏng dần khi vũ trụ giãn nở.
Vật chất, ánh sáng và các loại bức xạ khác tràn xa ngày càng mỏng dần khi vũ trụ giãn nở.
300.000 năm sau, vũ trụ nguội đi xuống dưới 3000 độ K và trở nên trong suốt, electron không chuyển động nhanh như trước nữa. Các hạt nhân có thể giữ các electron lại, tạo thành các nguyên tử, tạo ra các "viên gạch xây" của vũ trụ. Do tương tác giữa photon và các nguyên tử rất nhỏ nên chúng có thể lan truyền tự do.
Vật chất, ánh sáng và các loại bức xạ khác tràn xa ngày càng mỏng dần khi vũ trụ giãn nở. Hàng tỉ năm sau, những đám mây khí khổng lồ bắt đầu phân tán. Mỗi đám mây trở thành một thiên hà rồi dưới tác dụng của lực hấp dẫn hình thành các chùm sao, các vì sao trong khi vũ trụ vẫn tiếp tục mở rộng.
Kịch bản "thú vị" về Big Bang sau này được hỗ trợ bởi 3 dẫn chứng của Vật lý thiên văn:

  • Thứ nhất, năm 1929, Hubble (Mỹ) chứng minh được sự dịch chuyển có hệ thống trong quang phổ của các thiên hà về phía màu đỏ, chỉ ra rằng chúng đang rời xa chúng ta với tốc độ tỷ lệ với khoảng cách tới chúng ta. Đó là dấu hiệu cho thấy rằng vũ trụ đang nở ra và không gian trong đó các thiên hà cùng chuyển động cũng đang nở ra theo thời gian.
  • Thứ hai, năm 1965, Penzias và Wilson (Mỹ) khám phá: luồng bức xạ vô tuyến thể hiện những tính chất giống nhau trong mọi hướng và tương ứng với bức xạ nhiệt của vật đen ở nhiệt độ khoảng 3 độ K. Điều này phù hợp với giả định về vụ nổ Big Bang: bức xạ đó là thông điệp của ánh sáng cổ nhất đến từ vũ trụ ban đầu. Đó là những photon đầu tiên bắt đầu lan truyền tự do sau khi vũ trụ đã trở nên trong suốt và ánh sáng dịch chuyển về phía những bước sóng lớn.
  • Thứ ba, từ những năm 1970, các nhà khoa học đã phát hiện nhiều nguyên tố nhẹ như đơteri, heli 3, heli 4 và liti 7 trong vũ trụ, đặc biệt heli 4 chiếm đến 25% bất kể vùng không gian nào, phù hợp với giả định heli là chất khí sinh ra ở những khoảnh khắc đầu tiên của vụ nổ Big Bang.
Từ những năm 1980, với sự phát triển của Vật lý hạt nhân và Vật lý lý thuyết gắn với nó, người ta giải thích được nốt 2 điều "khó hiểu" còn lại của Big Bang là sự vắng mặt của phản vật chất và không tồn tại sự cong của vũ trụ ở những quy mô lớn.

Theo thang thời gian thì ranh giới cuối cùng của tri thức hiện nay ở vào quãng 10-43 giây sau Vụ nổ lớn.
Theo thang thời gian thì ranh giới cuối cùng của tri thức hiện nay ở vào quãng 10-43 giây sau Vụ nổ lớn.
Tuy nhiên, cái điểm 0, từ đó mọi thứ bắt đầu thì rõ ràng đối với các nhà khoa học vẫn chỉ là một... giấc mơ vì nó cực kỳ khó đưa ra một giả thuyết, thậm chí nhiều người còn cho là "quá sức" của kiến thức nhân loại. Đó là thời khắc mà cái lò lửa ban đầu có nhiệt độ 1032 K (tức 100.000 tỷ tỷ tỷ độ) thì vật chất sẽ diễn biến như thế nào? Theo thang thời gian thì ranh giới cuối cùng của tri thức hiện nay ở vào quãng 10-43 giây sau Vụ nổ lớn. Đó là thời điểm Planck. Chỉ có thể nghiên cứu được điểm đó khi một nhà khoa học thiên tài nào đó đưa ra được lý thuyết về sự hấp dẫn lượng tử.
Cái thời điểm 0 bí hiểm ấy hiện được các nhà khoa học gọi là "điểm kỳ dị ban đầu" để che giấu sự lúng túng của mình. Có lẽ tạm thời người ta đành phải dựa vào niềm tin tôn giáo chăng?
Đây là chuyện học thuật với nội dung chuyên môn hơi sâu. Chỉ có thể giải thích một cách "đơn giản" như thế.
Hy vọng với kiến thức phổ thông, chúng ta vẫn có thể hiểu được Big Bang là gì và những diễn biến sau đó như thế nào để tạo ra vũ trụ của chúng ta.
Cập nhật: 04/05/2017 Theo Vietnamnet

Big Bang - Quá trình phát triển của vũ trụ và những điều chưa biết

Trần Nam Sơn ,    8 năm trước

Trong nhiều thế kỷ, con người đã quan sát những vì sao và tự hỏi rằng làm thế nào, và bằng cách nào vũ trụ đã phát triển được như ngày hôm nay. Câu hỏi này đã trở thành một đề tài tranh luận dường như bất tận.

Trong nhiều thế kỷ, con người đã quan sát những vì sao và tự hỏi rằng làm thế nào, và bằng cách nào vũ trụ đã phát triển được như ngày hôm nay. Câu hỏi này đã trở thành một đề tài tranh luận dường như bất tận. Từ tôn giáo đến khoa học, vấn đề này đã đồng hành cùng con người trong suốt lịch sử nhân loại. Rất nhiều nhà khoa học vĩ đại cũng đã bị cuốn vào nó, có thể kể ra rất nhiều cái tên như Edwin Hubble, Albert Einstein hay Stephen Hawking... Và một trong những mô hình được chấp nhận rộng rãi nhất chính là học thuyết Big Bang. Bài viết dưới đây hi vọng sẽ cung cấp cho bạn đọc một vài thông tin về học thuyết nổi tiếng này.
Mặc dù cực kỳ phổ biến, nhưng cũng rất nhiều người có sự ngộ nhận về học thuyết này. Một trong những hiểu biết sai lầm hay gặp nhất chính là việc cho rằng Big Bang mô tả nguồn gốc của vũ trụ. Big Bang, thực chất, để giải thích việc làm cách nào vũ trụ có thể phát triển từ một trạng thái rất nhỏ và dày đặc để được như ngày hôm nay - không phải để tìm hiểu xem điều gì đã tạo nên vũ trụ ngày hôm nay, hay cái gì đã tồn tại trước sự hình thành của vũ trụ, cũng như những điều nằm bên ngoài vũ trụ.
Một quan niệm sai lầm khác chính là việc cho rằng Big Bang là một vụ nổ. Big Bang, thực chất dùng để mô tả sự giãn nở của vũ trụ. Một số phiên bản khác cho rằng sự giãn nở này là cực kỳ nhanh (có thể còn nhanh hơn cả tốc độ ánh sáng), nhưng dù sao đi nữa, đó cũng không phải là một vụ nổ theo đúng nghĩa.
Khái quát hóa thuyết Big Bang là một thách thức thực sự. Nó liên quan đến rất nhiều khái niệm mâu thuẫn với cái cách mà chúng ta nhận thức thế giới. Càng đi sâu tìm hiểu về những thời điểm sơ khai nhất trong sự hình thành vũ trụ, bạn càng thấy chúng trở nên mâu thuẫn với những định luật khoa học cơ bản nhất. Cuối cùng, bạn chợt nhận ra rằng mình không thể đưa ra một định luật khoa học nào để lý giải chính xác điều gì đã xảy ra, vì chính các định luật khoa học đã tự phủ nhận nó.
Một vài nét cơ bản về thuyết Big Bang
Học thuyết Big Bang mô tả về quá trình giãn nở của vũ trụ từ thời điểm nó bắt đầu hình thành cho đến nay. Đó là một trong số những học thuyết cơ bản nhất về sự hình thành và phát triển của vũ trụ. Đồng thời, nó cũng đưa ra một số dự đoán về tương lai của vũ trụ, và rất nhiều trong số những phán đoán này đã được chứng minh là hoàn toàn có cơ sở. Chính những điều này đã làm cho Big Bang được chấp nhận một cách rộng rãi.
Điều đầu tiên cần đề cập đến khi nói về thuyết Big Bang chính là khái niệm về một vụ nổ. Hoàn toàn sai lầm. Nhiều người nghĩ rằng, Big Bang mô tả thời điểm khi tất cả các thể loại vật chất và năng lượng của vũ trụ được tập trung ở một điểm rất rất nhỏ, rồi sau đó, BANG, vật chất được bắn đi khắp nơi - và kết quả là vũ trụ được sinh ra. Trên thực tế, Big Bang cho thấy sự giãn nở của vũ trụ, có nghĩa là mọi thứ tồn tại trong vũ trụ được dàn trải đều ra theo các chiều không gian. Ví dụ minh họa dưới đây sẽ giúp bạn đọc hiểu rõ hơn về sự khác biệt giữa 2 khái niệm này.
Ngày nay, khi nhìn vào bầu trời đêm, chúng ta có thể thấy thiên hà được phân chia bởi một khoảng không rộng lớn. Ở những khoảnh khắc sơ khai khi vũ trụ hình thành, khoảng không đó, bao gồm tất cả những vật chất và năng lượng của vũ trụ được nén vào 1 điểm duy nhất - 1 điểm có khối lượng và mật độ lên đến ngưỡng vô cùng - và các nhà vũ trụ học gọi nó là điểm Singularity.
Vậy câu hỏi đặt ra là, vũ trụ sẽ như thế nào vào thời điểm bắt đầu xảy ra Big Bang. Rất dày đặc và rất nóng, nhưng sau đó, do sự giãn nở rất nhanh, nên mật độ và nhiệt độ dần hạ xuống. Cùng với sự giãn nở này, vật chất bắt đầu hình thành, các bức xạ mất dần năng lượng. Và chỉ trong một vài giây, vũ trụ được hình thành, trải dài đến vô tận chỉ từ một điểm đen duy nhất.
Đồng thời với sự giãn nở này, 4 lực cơ bản của vũ trụ cũng đã hình thành:
Lực điện từ
Lực hạt nhân mạnh
Lực hạt nhân yếu
Lực hấp dẫn
Vào thời điểm bắt đầu xảy ra Big Bang, tất cả các lực này là một phần của một lực duy nhất - và làm cách nào các lực này có thể tồn tại cùng nhau trong một thể thống nhất, chúng tương tác với nhau ra sao, có liên quan đến nhau như thế nào - đó vẫn là một bí ẩn lớn.
Thuyết Big Bang đã ra đời như thế nào?
Thuyết Big Bang là kết quả của hai cách tiếp cận khác nhau trong việc nghiên cứu vũ trụ: thiên văn học và vũ trụ học. Các nhà thiên văn học sử dụng nhiều công cụ khác nhau để quan sát các vì sao, trong khi đó các nhà vũ trụ học nghiên cứu các tính chất vật lý thiên thể của vũ trụ.
Ánh sáng cũng mang tính chất sóng, và các nhà thiên văn học nhận thấy có một số ngôi sao có bước sóng thiên về phía quang phổ hồng ngoại nhiều hơn dự kiến. Từ đó, họ đưa ra giả thuyết rằng các ngôi sao này đang di chuyển xa dần khỏi Trái đất. Khi những ngôi sao này di chuyển, các bước sóng mà chúng phát ra sẽ dần bị "căng" ra - kết quả là bước sóng này bị kéo dài, và trở thành một quang phổ hồng ngoại. Các nhà vũ trụ học gọi hiện tượng này là Redshift - tạm dịch: Dịch chuyển đỏ. Bước sóng càng hướng về phía hồng ngoại, ngôi sao đó càng di chuyển nhanh hơn.
Vào năm 1920, nhà thiên văn học Edwin Hubble đã phát hiện ra một điều rất lý thú: Vận tốc xuất hiện của một ngôi sao tỷ lệ thuận với khoảng cách của nó từ Trái đất. Nghĩa là, một ngôi sao ở càng xa Trái đất thì sẽ di chuyển càng nhanh ra xa chúng ta. Với giả thuyết này, một lần nữa Hubble khẳng định rằng vũ trụ đang tiếp tục giãn nở.
Phát hiện của Hubble đưa đến một cuộc tranh cãi vẫn tiếp diễn đến ngày nay: Chính xác thì mối quan hệ giữa vận tốc và khoảng cách của một ngôi sao là gì? Các nhà khoa học gọi đây là hằng số Hubble, và Hubble đưa ra giả thuyết rằng nó vào khoảng 464 km/s/Mpc. Mpc - viết tắt của Megaparsec là một đơn vị khoảng cách tương ứng với 3.08 x 1022m.
Nhưng con số này là không chính xác, vì tại thời điểm của Hubble, các dụng cụ thiên văn là không đủ độ nhậy và độ chính xác để đo khoảng cách giữa Trái đất và các vì sao. Ngày nay, khi các dụng cụ đo đạc và quan sát đã trở nên tiến bộ hơn, các nhà khoa học đã thay đổi hằng số Hubble, tuy nhiên, chính xác nó là bao nhiêu - đây vẫn là một cuộc tranh luận đang tiếp diễn.
Big Bang- từ khoảnh khắc đầu tiên.
Do những giới hạn của khoa học, chúng ta không thể đưa ra bất kỳ dự đoán nào về thời điểm vũ trụ ra đời. Thay vào đó, ta có thể nghiên cứu những thời điểm ngay sau khoảnh khắc trọng đại này. Và thời điểm sớm nhất được đề cấp đến - đó là vào khoảng thời gian t= 1 x 10^ -43 s.
Trong những thời điểm đầu đời, vũ trụ là quá nhỏ bé, và những định luật vật lý cổ điển trở nên lệch pha khi áp dụng vào đây. Và vật lý lượng tử đã thay thế vật lý cổ điển trong cuộc chơi này, vì nó có thể được ứng dụng trên các thành phần hạ nguyên tử.
Tại thời điểm t= 1 x 10^-43s: Vũ trụ là vô cùng nhỏ bé, dày đặc và có nhiệt độ rất cao. Các nhà khoa học ước tính, lúc này vũ trụ chỉ kéo dài trên 1 khoảng 1 x 10^-33 cm - so với không gian trải dài hàng tỷ năm ánh sáng như ngày nay. Trong giai đoạn này, các nhà khoa học tin rằng, vật chất và năng lượng là không thể tách rời. Bốn lực cơ bản của vũ trụ trở thành một lực thống nhất. Và nhiệt độ của vũ trụ lúc này ước tính vào khoảng 10^32 độ C.
Khi vũ trụ mở rộng, nhiệt độ này dần hạ xuống. Vào khoảng 1 x 10^-35s, vật chất và năng lượng bắt đầu tách rời. Các nhà khoa học gọi đây là thời điểm Baryogenesis - thời điểm mà ta có thể quan sát được vật chất. Tại thời điểm này, vũ trụ được lấp đầy bởi một lượng gần như tương đương của vật chất và phản vật chất. Tuy nhiên, vật chất vẫn chiếm ưu thế về số lượng, nên khi hạt và phản hạt bắt đầu triệt tiêu nhau, một số hạt vật chất sẽ may mắn sống sót. Và những thành phần này sẽ nhanh chóng kết hợp với nhau để tạo thành vật chất trong vũ trụ.
Tại thời điểm t = 1 x 10^-11s, các nhà khoa học đã có thể tái tạo lại vũ trụ trong phòng thí nghiệm với máy gia tốc hạt. Và điều này đồng nghĩa với việc ta có thể trực tiếp quan sát vũ trụ, với những hình ảnh và số liệu cụ thể, chứ không còn thông qua phán đoán như ở những thời điểm trước nữa. Vào lúc này, lực thống nhất đã bị phá vỡ. Lực điện từ và lực hạt nhân yếu bị tách ra trước tiên. Photon chiếm ưu thế hơn so với vật chất, nhưng vũ trụ lúc này vẫn là cực kỳ dày đặc, và do đó khái niệm "ánh sáng" vẫn còn rất xa xôi.
Tiếp theo đó là giai đoạn tiêu chuẩn của ngành vũ trụ học: thời điểm 0.01s kể từ sau Big Bang. Vũ trụ tiếp tục mở rộng, nhiệt độ vẫn tiếp tục hạ xuống. Các hạt hạ nguyên tử bắt đầu liên kết với nhau, tạo ra neutron và proton. Khi thời gian 1s đã bắt đầu trôi qua, những hạt nhân của các nguyên tố nhẹ bắt đầu hình thành: hydrogen, heli, lithium. Tuy nhiên, lúc này vũ trụ vẫn là quá nóng để các electron có thể tham gia cuộc chơi và hình thành nên các nguyên tử ổn định.
....Và 13 tỷ năm sau.
Một giây đầu tiên dường như là một câu chuyện rất dài, nhưng đó mới chỉ là sự khởi đầu. Sau 100 giây, nhiệt độ của vũ trụ được làm mát xuống chỉ còn.... 1 tỷ độ C. Các hạt hạ nguyên tử tiếp tục kết hợp với nhau. Căn cứ theo khối lượng, sự phân bố của các nguyên tố là vào khoảng 75% hạt nhân hydrogen và 24% hạt nhân heli. 1% còn lại được phân bố cho các hạt nhẹ hơn, ví dụ như lithium.
Nhiệt độ lúc này vẫn là quá cao để electron có thể vào cuộc, do đó, chúng chọn cách va chạm với với các positron để tạo ra nhiều photon hơn. Nhưng mật độ của vũ trụ lúc này vẫn là quá dày đặc, và ánh sáng vẫn chưa xuất hiện.
Quá trình mở rộng và làm mát vũ trụ vẫn tiếp tục diễn ra. Sau khoảng 56.000 năm, nhiệt độ vũ trụ đã hạ xuống chỉ còn khoảng 9000 độ C, và tại thời điểm này, mật độ vật chất của vũ trụ đã bắt đầu phù hợp với mật độ bức xạ. Trải qua khoảng 300.000 năm nữa, nhiệt độ chỉ còn là 3000 độ C, và cuối cùng, proton và electron đã có thể kết hợp với nhau để tạo ra các nguyên tử Hydro đầu tiên.
Cũng tại thời điểm này, 380.000 năm sau Big Bang, ánh sáng đã xuất hiện. Bức xạ nền vi sóng vũ trụ đã hình thành, và với việc nghiên cứu những bức xạ này, giờ đây con người đã có thể phác thảo lại hình ảnh vũ trụ từ thuở sơ khai ban đầu.
Cho đến khoảng 100 triệu năm sau hoặc lâu hơn thế, vũ trụ vẫn tiếp tục giãn nở và được làm mát. Một vài biến động nhỏ về lực hấp dẫn sẽ khiến cho các phần tử vật chất co cụm lại với nhau, chúng trở nên dày đặc hơn, và nóng hơn, và sau khoảng 1 đến 2 trăm năm, các ngôi sao ra đời.
Khi một ngôi sao nào đó già cỗi đi và phát nổ, những mảnh vật chất sẽ bắn đi khắp vũ trụ, và tạo nên những nguyên tố nặng mà ta có thể tìm thấy trong tự nhiên (những nguyên tố có khối lượng trên Uranium). Những dải thiên hà bắt đầu hình thành nên các cụm riêng, và dải thiên hà của chúng ta được hình thành từ cách đây khoảng 4.6 tỷ năm.
Thuyết Big Bang cho ta biết điều gì?
Một số nhà vũ trụ học sử dụng thuyết Big Bang để ước tính tuổi của vũ trụ. Nhưng do những kỹ thuật đo lường khác nhau, nên sai số của phép đo này là rất lớn, và trên thực tế, sai số này có thể lên đến hàng tỷ năm.
Việc phát hiện ra vũ trụ đang mở rộng sẽ dẫn đến nhiều câu hỏi khác. Nó có mở rộng ra mãi không? Nó có dừng lại không? Liệu sẽ có sự đảo ngược không? Căn cứ theo thuyết tương đối tổng quát, tất cả điều này đều phụ thuộc vào việc lượng vật chất trong vũ trụ là bao nhiêu.
Ở đây, lực hấp dẫn đóng vai trò quyết định. Cụ thể, nếu lượng vật chất trong vũ trụ là đủ lớn, lực hấp dẫn sẽ có đủ khả năng làm chậm lại quá trình giãn nở của vũ trụ, và có thể làm vũ trụ thu nhỏ lại. Và nếu chuyện này thực sự xảy ra, các nhà vũ trụ học sẽ phác thảo nên hình ảnh 1 vũ trụ khép kín với một độ cong dương.
Nhưng nếu lực hấp dẫn là không đủ mạnh để đảo ngược quá trình mở rộng của vũ trụ, nó sẽ giãn ra mãi mãi. Và khi đó, vũ trụ hoặc sẽ là không có đường cong, hoặc là nó sẽ mang một độ cong âm.
Theo thuyết Big Bang, không có gì gọi là trung tâm, hay cái rốn của vũ trụ. Mỗi điểm trong vũ trụ đều giống như điểm khác, không có điểm nào là trung tâm. Quan điểm này luôn là điều cốt lõi trong thuyết Big Bang - khi thuyết này cho rằng vũ trụ đang mở rộng một cách đồng nhất và đẳng hướng. Và thực tế đã cho thấy vật chất trong vũ trụ có vẻ như đang chuyển động theo đúng những gì mà thuyết Big Bang đề ra.
Những kẽ hở trong thuyết Big Bang
Kể từ sau khi ra đời, thuyết Big Bang đã vấp phải rất nhiều lời chỉ trích và hoài nghi. Và dưới đây là những kẽ hở phổ biến nhất của học thuyết này:
1. Đi ngược lại định luật thứ nhất của nhiệt động học. Định luật này phát biểu rằng, vật chất, cũng như năng lượng, không tự nhiên sinh ra và cũng không tự nhiên mất đi. Phe phản đối cho rằng, thuyết Big Bang đã đề ra giả thuyết vũ trụ được hình thành từ con số 0. Tuy nhiên, những người ủng hộ lại cho rằng lời chỉ trích này là không có căn cứ, vì 2 lý do. Thứ nhất, Big Bang không giải thích về việc vũ trụ được tạo ra như thế nào, mà chỉ nói về sự phát triển của vũ trụ. Thứ hai, khi các định luật khoa học cơ bản nhất lần lượt đổ vỡ dưới sự hình thành và phát triển của vũ trụ, không có gì chắc chắn rằng định luật bảo toàn vật chất và năng lượng này vẫn có thể đúng 100%.
2. Đi ngược lại định luật Entropy. Định luật này phát biểu rằng theo thời gian, vật chất sẽ càng trở nên hỗn độn hơn. Nhưng nếu nhìn lại, bạn có thể thấy, tại thời điểm ban đầu, vũ trụ là hoàn toàn đồng nhất và đẳng hướng, và cho đến nay, vũ trụ là một tập hợp của vô vàn những vì sao, những thiên hà.... và điều này là một dấu hiệu cho thấy thuyết Big Bang vẫn tuân thủ định luật Entropy.
3. Sự mở rộng quá nhanh của vũ trụ trong giây đầu tiên đã phá vỡ giới hạn vận tốc ánh sáng. Những người ủng hộ có nhiều quan điểm khác nhau để bác bỏ ý kiến này. Thứ nhất, vào thời điểm đầu tiên của Big Bang, thuyết tương đối hoàn toàn không được áp dụng, và do đó, chẳng có vấn đề gì với việc di chuyển nhanh hơn vận tốc ánh sáng. Thứ hai, không gian hoàn toàn nằm ngoài những tương tác trọng lực, do đó không gian tự bản thân nó hoàn toàn có thể mở rộng nhanh hơn vận tốc ánh sáng.
Trên đây chỉ là một vài sơ hở hay được đưa ra tranh luận nhất của thuyết Big Bang. Nhưng vẫn còn rất nhiều câu hỏi khác mà thuyết Big Bang vẫn chưa giải thích được. Điều gì đã xảy ra trước Big Bang? Liệu có gì khác tồn tại ngoài vũ trụ hay không? Và hình hài của vũ trụ là như thế nào? Hi vọng trong một ngày không xa, một học thuyết khác, hoàn chỉnh hơn sẽ có thể giải đáp được những câu hỏi đó."

                                                  ***
(còn nữa)
 

Nhận xét

Bài đăng phổ biến từ blog này

NGẬM SẦU (ĐL)

MUÔN MẶT ĐỜI THƯỜNG III/104

MỌC CÁNH